Efficiently Measuring Magnocellular and Parvocellular Function in Human Clinical Studies.
نویسندگان
چکیده
PURPOSE Pokorny and Smith (J Opt Soc Am A Opt Image Sci Vis. 1997;14:2477-2486) described a laboratory method to behaviorally measure magnocellular and parvocellular pathway sensitivity. We investigated whether their method may be more efficiently applied to clinical populations by reducing adaptation times. METHODS We measured contrast detection thresholds to a 30-ms increment on a 30 cd/m2 background every 2 seconds after a 1-minute preadaptation to either a bright (90 cd/m2) or dim (3 cd/m2) luminance, in four observers. We also measured increment thresholds atop a steady 60 cd/m2 luminous pedestal (30 cd/m2 above the background) that remained on for 80 seconds, and tracked thresholds for 60 seconds after pedestal offset. We also assessed the minimum number of stimulus presentations required to reliably estimate thresholds using our four alternative forced choice (4-AFC) zippy estimation by sequential testing (ZEST) procedure. RESULTS Detection thresholds between the bright and dim preadaptation conditions were identical within seconds after the offset of the preadaptation luminance. Thresholds on the steady luminance pedestal reached stable values within approximately 10 seconds from pedestal onset, and recovered within 2 seconds of pedestal offset. Analysis of the 4-AFC ZEST procedure found little decrease in threshold variability after approximately 14 stimulus presentations. CONCLUSIONS Preadaptation and stimulus adaptation times may be reduced dramatically from those described by Pokorny and Smith, without altering thresholds. TRANSLATIONAL RELEVANCE Experimental time with clinical populations often is limited. Increasing the efficiency of the method of Pokorny and Smith allows for either shorter test sessions, or for a more extensive range of experimental parameters to be explored in disease.
منابع مشابه
The effects of parvocellular lateral geniculate lesions on the acuity and contrast sensitivity of macaque monkeys.
The effects of ablating the visual pathway that passes through the parvocellular (dorsal) LGN were tested in 2 macaque monkeys by measuring acuity and both luminance and chromatic contrast sensitivity. Thresholds were tested monocularly before and after ibotenic acid was used to lesion parvocellular layers 4 and 6 of the contralateral geniculate. The injections were centered at the representati...
متن کاملMagnocellular and parvocellular contributions to the responses of neurons in macaque striate cortex.
Anatomical and physiological studies of the primate visual system have suggested that the signals relayed by the magnocellular and parvocellular subdivisions of the LGN remain segregated in visual cortex. It has been suggested that this segregation may account for the known differences in visual function between the parietal and temporal cortical processing streams in extrastriate visual cortex...
متن کاملPsychophysical Evidence for Impaired Magno, Parvo, and Konio-cellular Pathways in Dyslexic Children
PURPOSE Dyslexia is one of the most common learning disabilities affecting millions of people worldwide. Although exact causes of dyslexia are not well-known, a deficit in the magnocellular pathway may play a role. We examined possible deficiency of magnocellular, as compared to parvocellular and koniocellular pathway function by measuring luminance and color perception. METHODS Visual stimul...
متن کاملVisual response latencies of magnocellular and parvocellular LGN neurons in macaque monkeys.
Signals relayed through the magnocellular layers of the LGN travel on axons with faster conduction speeds than those relayed through the parvocellular layers. As a result, magnocellular signals might reach cerebral cortex appreciably before parvocellular signals. The relative speed of these two channels cannot be accurately predicted based solely on axon conduction speeds, however. Other factor...
متن کاملPsychophysical assessment of magno- and parvocellular function in schizophrenia.
Recently developed psychophysical techniques permit the biasing of the processing of the stimulus by early visual channels so that responses reflect characteristics of either magno- or parvocellular pathways (Pokorny & Smith, 1997). We used such techniques to test psychophysically whether the global magnocellular dysfunction reported in schizophrenia also affects early processes. Seven schizoph...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Translational vision science & technology
دوره 4 5 شماره
صفحات -
تاریخ انتشار 2015